Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis.

نویسندگان

  • Sosipatros A Boikos
  • Constantine A Stratakis
چکیده

Pituitary tumors are among the most common human neoplasms. Although these common lesions rarely become clinically manifest and they are almost never malignant, they are the cause of significant morbidity in affected patients. The genetic causes of common pituitary tumors remain for the most part unknown; progress has been limited to the elucidation of the molecular etiology of four genetic syndromes predisposing to pituitary neoplasias: McCune-Albright syndrome, multiple endocrine neoplasia type 1, Carney complex and, most recently, familial acromegaly and prolactinomas and other tumors caused by mutations in the GNAS, menin, PRKAR1A, AIP, and p27 (CDKN1B) genes, respectively. Intense molecular studies of sporadic pituitary tumors from patients with negative family histories and no other neoplasms have yielded interesting findings with abnormalities in growth factor expression and cell cycle control dysregulation. To add to the difficulties in understanding pituitary tumorigenesis in man, good murine models of these neoplasms simply do not exist: pituitary tumors are common in rodents, but their histologic origin (mostly from the intermediate lobe), age of presentation (late in murine life) and clinical course make them hardly models of their human counterparts. The present report reviews the clinical and molecular genetics of the cAMP-dependent protein kinase pathway in human pituitary tumors; it also reviews briefly other pathways that have been involved in sporadic pituitary neoplasms. At the end, we attempt a unifying hypothesis for pituitary tumorigenesis, taking into account data that are also discussed elsewhere in this issue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2.

Carney complex (CNC) is caused by PRKAR1A-inactivating mutations. PRKAR1A encodes the regulatory subunit type I-alpha (RIalpha) of the cAMP-dependent kinase (PKA) holoenzyme; how RIalpha insufficiency leads to tumorigenesis remains unclear. In many cells PKA inhibits the extracellular receptor kinase (ERK1/2) cascade of the mitogen-activated protein kinase (MAPK) pathway leading to inhibition o...

متن کامل

Impact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)

Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...

متن کامل

The efficacy and molecular mechanism of the effect of schisandrin b on the treatment of erectile dysfunction

Objective(s): The purpose of this study is to determine the efficacy and molecular mechanism of the effect of schisandrin b (SCHB) on treating erectile dysfunction (ED) in a rat model with bilateral cavernous crushing nerve injury. Materials and Methods: The ED rat model was established with bilateral cavernous nerve crushing, and then c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 16 Spec No 1  شماره 

صفحات  -

تاریخ انتشار 2007